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Classical "Freezing" of Fast Rotations. 
A Numerical Test of the Boltzmann-Jeans Conjecture 
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We study numerically a very simple model representing a classical planar 
molecule, with only translational and rotational degrees of freedom, which 
collides with a fixed wall. On this model we test numerically an old conjecture 
by Boltzmann and Jeans, according to which the rate of the energy exchanges 
between the translational and the rotational degrees of freedom, due to colli- 
sions, decreases exponentially with the angular velocity of the molecule, giving 
rise to a purely classical phenomenon of "freezing" of fast rotations. Our results 
are in full agreement with the Boltzmann-Jeans conjecture. More precisely, we 
find that for each collision the average on the initial phase of the energy 
exchange, and the fluctuation, follow two different exponential laws; this fact 
turns out to have a rather delicate role in the approach of statistical equilibrium. 
A discussion of the numerical accuracy--which is rather high, since we are able 
to measure energy exchanges of one part over 1016--is also reported. 

KEY WORDS: Numerical experiments; exponential estimates; equipartition 
times; Boltzmann-Jeans conjecture. 

1. I N T R O D U C T I O N  

At  the  t u r n  of  the  cen tury ,  be fore  q u a n t u m  mechan ics ,  B o l t z m a n n  (1) a n d  

Jeans  (2'3) p r o p o s e d  a c o m p l e t e l y  classical  m e c h a n i s m  to exp la in  the fai lure  

of  the  p r inc ip le  o f  e q u i p a r t i t i o n  of  ene rgy  for s ta t is t ical  sys tems c o n t a i n i n g  

h i g h - f r e q u e n c y  degrees  of  f r eedom.  A typica l  m o d e l  they  refer to is a classi- 

cal  gas of  d i a t o m i c  mo lecu l e s  wh ich  can  t rans la te ,  ro ta te ,  and  v ib ra te ;  on  

the basis  of  the  p r inc ip le  of  e q u i p a r t i t i o n  of  energy,  which  is the  hea r t  of  

c lass ical  s ta t i s t ica l  m e c h a n i c s  at equ i l ib r ium,  one  w o u l d  expec t  seven  con-  

1 Correspondence to Oscar Baldan can be sent in care of Giancarlo Benettin. 
2 Dipartimento di Matematica Pura e Applicata dell'Universitfi di Padova, Gruppo Nazionale 

di Fisica Matematica, and Consorzio Interuniversitario Nazionale di Fisica della Materia, 
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tributions to the specific heat (three from translations, two from rotations, 
one kinetic and one potential for vibrations), and thus a classical value 
C v  = 7R. On the contrary, at not too high temperatures one has C v  = ~R 

(freezing of vibrations), while at low enough temperatures one finds 
C v  = 3R (freezing of both vibrations and rotations). 

The basic idea by Boltzmann and Jeans (see, for comments, refs. 4-7) 
is that the above equilibrium description, although in principle correct, 
nevertheless could be not really significant if the equilibrium times are too 
large. More precisely, they conjectured that the energy exchanges due to 
collisions, leading ultimately to equipartition, could be so small that either 
the vibrational or both the vibrational and rotational degrees of freedom 
could appear as practically frozen for extremely long time scales ("days or 
years, ''(1) "hundreds of centuries, ''(2) in their own words). 

Jeans, in particular, discussed the freezing of vibrations, and (on the 
basis of heuristic considerations) proposed an exponential law of the form 3 

A E  ~ - g e  -~~ (t.1) 

for the average energy exchange A E  produced by a collision; v is here a 
constant of the order of the collision time, while co is the frequency of the 
internal vibration, and g is some natural microscopic unit. From (1.1) one 
then gets an exponential law of the form 

T~-  To eT~ (1.2) 

for the equilibrium times, To being a constant of the order of the average 
time between collisions. It is worthwhile to remark that such an exponen- 
tial law could produce rather sharp freezing phenomena(m: for example, 
assume (as is reasonable) To= 10-12sec, v =  10 -13 sec, and denote by 
col~-2.8x1014sec -1 the value of co at which one has e~=1012;  i.e., 
T~- 1 sec. Then for co = lco~ one has T =  10 6 sec, while for co = 2col one 
has T =  1012 sec ~ 3 x 104 years. 

Quite recently, the exponential law (1.2) has been successfully tested 
numerically, (m although on a very simple and rough one-dimensional 
model of purely translating and vibrating molecules, and on a quite 
limited range of frequencies. The elementary law (1.1) was also proved 
rigorously, (lz~3) under rather general assumptions, within classical pertur- 
bation theory (see also refs. 5 and 14), although, as is typical in this 

3 An exponential law of this form was later reconsidered by Landau and Teller (8~ and 
by Rapp, tg) still on the basis of heuristic considerations, and apparently unaware of 
the Boltzmann-Jeans ideas. Similar heuristic procedures are also considered in plasma 
physicsJ 1~ 
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framework, the estimates one gets for the most relevant constants (such 
as z) are definitely too poor to be used in connection with physical 
applications. 

The aim of the present paper is to test numerically the validity of the 
exponential law (1.1) with regard to the freezing of fast rotations. More 
precisely, working in the same spirit as ref. 11, we consider here a drasti- 
cally simplified model, namely a planar model with purely rotating and 
translating molecules, and also restrict ourselves to the Simpler case of 
collisions of molecules with a fixed wall (work is in progress, however, for 
the case of molecule-molecule collisions); indeed, as in ref. 11, our purpose 
is just to show that the Boltzmann-Jeans phenomenon, i.e., the long-time 
freezing of the high-frequency degrees of freedom, in principle does exist for 
the rotations, too. 

Deeply connected to the present paper is ref. 15, where, in the same 
spirit as refs. 12 and 13, one makes use of perturbation theory to study 
theoretically the freezing of fast rotations. Some of the phenomena here 
observed are there rigorously proven, for a rather wide class of dynamical 
systems, including the model here considered. However, as we shall see, 
there still remains, both qualitatively and quantitatively, a rather wide gap 
between the theory and the numerical results; we shall come back to this 
point in the conclusions. 

The paper is organized as follows: In Section 2 we describe the model 
we are dealing with, and present the basic results on the elementary colli- 
sion process, while in Section 3 we discuss the approach to statistical equi- 
librium induced by a long sequence of collisions. Section 4 is devoted to a 
discussion of the numerical accuracy; a conclusion follows. 

2. D E S C R I P T I O N  OF THE M O D E L ,  A N D  S T U D Y  OF THE 
E L E M E N T A R Y  COLLIS ION P R O C E S S  

Let us consider a planar molecule which can translate and rotate on 
a given plane. The configuration of the molecule is conveniently described 
by three coordinates, say the Cartesian coordinates x, y of the center of 
mass, and an angle q) giving the orientation. Denoting by m and I the total 
mass and the inertia moment of the molecule, respectively, and by Px, Py, 
pe the conjugate momenta, we write the Hamiltonian 

V is here the external potential, which in particular provides the interaction 
between the translational and the rotational degrees of freedom. 
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Fig. 1. The modeL. 
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The form of V is chosen in order to simulate, a l though in a very rough 
schematic way, a smooth  4 reflection by a ,wall. To  this purpose,  let us 
assume that  the wall is flat, and parallel to the y axis (see Fig. 1); the 
potential  V is chosen to be short  range and independent  of y, more  
precisely, of the form 

e - ( r / d ) 2  

V =  U - -  r = Ix + a cos q0l (2.2) 
rid ' 

U and d are here suitable constants,  which provide natural  microscopic 
units of energy and length, while a, or better, the ratio a/d, gives the sen- 
sitivity of the interaction potential  to the or ientat ion of the molecule. There 
is no deep mot iva t ion  for the above choice of V: however,  the fast decay, 
due to the superexponential  cutoff e (r/d)2, turns out to be rather  con- 
venient in numerical  computa t ions ,  since it drastically reduces the effective 
interaction length, and consequently the compute r  time. 

Since V is independent  of y, the y coordinate  plays no role at all in the 
dynamics of a collision, and can be omitted;  one is then confronted with 
the two-degrees-of-freedom Hami l ton ian  

p2 ~ /  e-(r/d~2 
H(px, p~o,x,q))=~m+ +U r / ~ '  r=]x+acos~o[ (2.3) 

4 It is clear from classical perturbation theory that the smoothness of the Hamiltonian is 
a quite important assumption. As shown (by numerical computations) in ref. 16, if one 
considers hard-core collisions, then the exponential law disappears. 
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Throughout our computations we took U, d, and m, respectively, as units 
of energy, length, and mass; we also fixed a/d=O.1. The only constant 
which remains to be specified is then the inertia moment I, or better, 
the dimensionless quantity J = I/ma 2. We set, typically, J = 1, and only 
occasionally changed this value, which, as we shall see below, turns out 
to be largely irrelevant. 

Let us denote by E~=  E ~ =  _ p~/2m, p~/2I  the translational and the 
rotational energy, respectively, and by AE the energy exchange during a 
collision (positive, if E~0 decreases and E x increases). To measure AE, one 
should consider, in principle, the whole dynamics from t = - o o  to t = + az; 
practically, it is enough to fix a sufficiently large distance do and say that 
the collision begins and ends when one has x = do. Because of the strong 
cutoff in the potential, it is fairly sufficient to take, for example, do~d= 6 
(when using double precision, namely 16 significant digits), or do~d= 8 
(with so-called quadruple precision, or the H-floating representation of real 
numbers, corresponding to 33 significant digits). Since x is initially fixed, 
AE can be thought to be a function of the initial velocity of the center 
of mass v, of the initial angular velocity co, and of the initial phase 0, 
AE= AE(v, co, t) ). 

In agreement with the idea that collisions lead eventually to statistical 
equilibrium, that is, to energy equipartition among all degrees of freedom, 
one expects that, for given Ex and sufficiently high E~o, positive values of 
AE are statistically favorite (actually, if x is fixed, and Ex, E~ are also 
given, the only quantity on which one can average is the initial phase ~). 
It is not difficult to see that equipartition corresponds to having, at the 
beginning of a collision, Ex = ~E, E~o = �89 (and not, as one could naively 
expect, Ex = E~ = OE). The reason is as follows: since x is fixed, we are not 
looking at the whole phase space, but at a surface of section. Now, the 
microcanonical measure, which is assumed to describe the statistical equi- 
librium in the phase space, induces a corresponding equilibrium measure 
on the section; while the former is uniform, the latter has a density propor- 
tional to the component of the velocity in the phase space perpendicular to 
the section: that is, in our case, proportional to ]vj. Practically, if ( f )  
denotes the microcanonical average of any dynamical variable f,  and ( f ) '  
denotes the corresponding average on the surface of section, one has 
( f ) ,  ,/2 1/2 = <E:, f> /<E  x ). Tak ing fequa l  to Ex or E~o, and computing in the 
standard way the microcanonical averages, one finally finds 

(E~o)' = �89 ( E x ) ' =  ~E (2.4) 

Thus, as far as E~o > IEx, i.e., co2> (m/2I)v 2, one has an excess of rota- 
tional energy; in this condition AE is expected to be, on the average, 
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positive. At the same time, according to the Boltzmann Jeans conjecture, 
AE is expected to be small, namely to decrease exponentially with co, if co 
is sufficiently large. This is precisely what we are going to test now. 

Let us first fix v, and look at the dependence of AE on co and ~. 
Figure 2 represents AE versus ~, for several values of co, at Ex = 1, i.e., 
v = x/2. One can observe that: 

(i) For increasing co, AE becomes a nicer and nicer function of ~, in 
fact almost indistinguishable from a sinusoid already at co > 10; however, 
each sinusoid does not oscillate around zero, but (consistently with the 
above analysis) around a positive average value go (dashed line). For 
sufficiently large co one can then write 

AE~- go(V, co) + gl(v, co) cos(O + Oo) (2.5) 

with suitable ~o. 

I = 0 . 0 %  Ex = ~.00~ O = e ~  = 7, 8 ,  P. 
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(a) (b) 

Plot of A E  vs. ~, for fixed E x and (a) 0 ) = 7 ,  8, 9, (b) o~= 10, 13, 16, bottom to top. 
The dashed line corresponds to go- 
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(ii) Both  g0 and gl are rapidly decreasing functions of  co (let us 
not ice  that the scale of  each figure is adapted to the extreme values of  AE). 
However ,  g0 decreases faster, so that one  has soon  go ~ gl.  

The dependence  of go and gl on  co, at v = xfl2, is reported in Fig. 3, on  
a semilogari thmic  scale. It is quite evident that, for sufficiently large co, 
both go and gl fo l low a lmost  exactly exponent ia l  laws, namely  

go = g * e  ~0o~ gl = g * e  ~1~,, 270 > 2 7 1  (2.6) 

Actually,  by interpolating the last data (last five points) ,  one  finds 

27O 
270 ~- 0.972, 271 ~- 0.494, -- -~ 1.97 (2.7) 

271 

It is reasonable  to conjecture 270/zl = 2. Concerning  g* ,  g * ,  one  gets g~" 
3.5 x 10 2, g *  -~ 9.3. As one  can see, we could fo l low the exponent ia l  law for 
go from g 0 -  10 -3  to go ~- 10-16, that is, for 13 orders of magnitude. In fact, 
the possibility of  reaching such an accuracy 5 did surprise us, and requires 
some discussion; a few c o m m e n t s  on  this point  are deferred to a special 
sect ion (Section 4). 

5 At low cost: Fig. 3 requires a few hours on a VAX 8600, using quadruple precision. 
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Fig. 4. 
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The presence of two different exponential laws for the mean value 6~ 
and for the fluctuating part d~l is, in our opinion, a remarkable fact. Since 
TO>rl ,  the ratio go/gl decreases exponentially with 00, soon becoming 
negligible (for example, at 00=44 one has ~o-~ 10 891). Now, if one is 
interested in a single collision, 6 then, for large 00, the more relevant term 
is g~. On the other hand, for a statistical problem (imagine that a very 
large number of molecules simultaneously collide with a wall, with the 
same initial v and co, and random initial phase), then the more significant 
quantity is the average g0 (although, as we shall see in the next section, the 
fluctuations, too, play a rather delicate role). 

Let us now come to the dependence of AE on v; actually, we limited 
ourselves to study the v dependence of the most important quantities, 
namely T o and r~. Our results can be summarized by saying that: ( i ) for  
each value of v, one finds exponential laws similar to those appearing in 
(2.6); (ii) both To and ~1 are decreasing functions of v, and remarkably, one 
has volT1 ~ 2 for all values of v. Figure 4 represents the exponential law for 
go, at several different values of E X, and thus of v, while Table I reports the 
precise results for *o and r~. The fact that ~o and ~1 decrease with v is not 
surprising, since these constants have the meaning of a "collision time," 
which must decrease, for increasing v, both because the molecule is faster 
and because, for higher translational energy, it does reach regions where 
the interaction potential is steeper; in fact, one could see from the data in 
Table I that ro and ~1 increase more than linearly with v 1. As we shall see 
in the conclusions, the v dependence of T o and ~ is a quite crucial point 
for the physical interpretation. Nevertheless, we did not further investigate 
this question, since at the moment we have not enough theoretical insight 
into it. Let us also remark that, while the qualitative features of the 

6 One can easily imagine a problem similar to the one considered here, but at a macroscopic 
scale (for example, the close encounter of an asteroid with a planet). 

Table I 

E~ ~o ~ ~o/~ 

0.2 2.592 1.318 1.97 
0.5 1.557 0.795 1.96 
1.0 0.972 0.494 1.97 
2.0 0.488 0.251 1.94 
3.0 0.292 0.151 1.94 
4.0 0.193 0.995 1.94 
5.0 0.135 0.069 1.94 
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Fig. 5. 
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phenomena here put in evidence are expected to be widely independent of 
the model  at hand, instead the precise dependence of % and ~1 on v 
certainly depends on the smoothness  of  the interaction potential, so that it 
might be better to reconsider this (not easy) problem in connection with a 
more realistic model. 

Let us close this section by showing that one of the constants entering 
the model,  namely the dimensionless inertia moment  J = I/ma 2, which was 
set equal to one in all of the above computations,  is indeed widely irrele- 
vant. Actually, Fig. 5 shows 8o as function of ~o, at v = x/2,  for J = 1 and 
J = 10; one can see that not only the slope %, but even the values of go 
are, for large ~o, almost independent of J .  This shows in particular that 
- a n d  not, say, the rotational energy Eo~ = �89 SO to speak, the 

correct independent variable to look at. 

3. S E Q U E N C E S  OF C O L L I S I O N S  

Imagine now that a given molecule has a sequence of collisions with 
the walls of a container. From the analysis of the previous section, it 
follows that, if co is initially sufficiently large, then a very large number of 
collisions are needed in order that an appreciable amount of energy is 
transferred from the rotational degree of freedom to the translational one. 
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Actually, after n collisions, if the energy exchange is so small that co and v 
do not change appreciably (otherwise the exponents rico in the exponential 
law get modified), and if we imagine that the initial phase ~b at the 
beginning of each collision is random, then, according to (2.5), (2.6), 
the overall energy exchange AE (n~ is a random variable, whose average 
(AE (~)) and variance ~r (~) are given by 

(AE ('~) =nCo ~- ne ~0~%~,, o-(~) = gl -~ (ne-~~176 ~/2 x/~ 

where one has used ro = 2r~. For large initial co, as far as ne-~~176 1, one 
has (AE (~) ~o("); one then expects a slow decreasing of Ee with n, i.e., 
a slow tendency toward equilibrium, with, however, relatively large fluctua- 
tions. Later on, say for n of order e ~~ both (AE c")) and cr (~) become of 
order one, and the energy transfer becomes significant. However, one 
should notice that, just because of the energy transfer, the exponent roco 
decreases, and correspondingly the energy exchanges become much easier. 
Practically, one expects that, after a large time interval (growing exponen- 
tially as e ~~176 during which E~ and E~ are separately almost constant, one 
gets, more or less abruptly, a quite different regime, characterized by rather 
large energy fluctuations. 

Such behavior is represented in Fig. 6, where Eo, or more precisely, 
the ratio E~o/(Ex+E,p), is plotted versus the number n of collisions; the 

Fig. 6. 
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Plot of E~/ (E  x + E~) for different sequences of collisions with initially E x = 1, and 
(a~t )  ~ = 5.4, 6, 7, 8. 



212 Baldan and Benet t in  

four curves there represented correspond to the same initial v, and differ for 
the initial value of e). Curves a and b exhibit quite clearly the behavior 
described above; curves c and d had not enough time to "jump down" 
(they would do it much later). The strict correlation between the value of 
E~ (and thus of ~o) and the amplitude of the fluctuations is quite evident. 

Of course, the microscopic dynamics being reversible, the inverse 
process of the one exhibited in Fig. 6 should also be dynamically possible 
(although statistically less favorable, since the random fluctuations of order 
gl are superimposed on a systematic energy transfer go > 0). An example of 
a sequence of collisions where the inverse process takes place on a 
reasonably short time scale (so that it is possible to see it numerically) is 
shown in Fig. 7, The behavior there exhibited is remarkably similar to 
intermittency. The basic idea is that, in principle, all regions of the phase 
space can be reached; however, it is quite unlikely to enter those regions 
where the rotational energy is high, and correspondingly, once one enters 
them, one is there trapped for a long time. Let us notice that, within the 
time scale of Fig. 7, a quite large part of the phase space, namely the one 
with E S ( E  x + E~o)>0.5, is never visited; in particular, if one looks at the 
time average of any dynamical variable, this region does not contribute. 
Clearly, if one wants to "see" regions wi th  higher E~o, with the correct 
statistical weight, one needs much longer times, in fact times growing 
exponentially, as e ~~176 Thus, energy equipartition and statistical equilibrium 
are possibly reached, but, so to speak, only on a "really infinite" time scale. 
Practically, in any reasonable experiment, one expects that the regions of 
the phase space where E~ exceeds some threshold value v do not contribute 
to the statistics, as if the rotational degree of freedom were, to some extent, 
frozen. The picture here discussed is certainly rough, and needs further 

7 The threshold depends, in principle, on the experimental time scale; however, according to 
the exponential law, the dependence is only logarithmic, and thus not appreciable over a 
rather wide range of times. 

,g 

g ~  
~ 6  

~ 1000. 20~0, 3000. 4000. 5OO0. 6000 
C o l l t s l ~ s  

Fig. 7. The intermittency phenomenon. Initial data: Ex = 0.5, ~ = 9. 
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investigation (in particular, for a thermodynamic interpretation, one 
should pass from the microcanonical to the canonical description). 
Nevertheless, it provides, in our opinion, a possible starting point for a 
deeper dynamical understanding of the Boltzmann-Jeans phenomenon. 

4. P R O B L E M S  OF N U M E R I C A L  A C C U R A C Y  

A first question we would like to discuss here concerns the possibility 
of getting reliable values for the average go of AE in spite of the presence 
of large fluctuations of order gl > go- The problem in principle is serious: 
even assuming that AE is computed exactly (this point will be considered 
later), a huge number of data could be expected to be necessary, in order 
to compute reliably the integral 

2)z 

go = (2=) -1 fo AE(co, v, O) dO (4.1) 

For example, if one has go/C~-10 -8 (as happens for the last data of 
Fig. 3), and one wants to get, say, three significant digits of go, then the 
precision one needs in the computation of the above integral is of the order 
of one part over 1011. In general, a simple procedure, like the trapezoidal 
rule, allows one to replace the integral by a finite sum on N points, with 
an error decreasing as N -2. More accurate procedures, like the Simpson 
rule, or the use of extrapolations, would lead to better results. Fortunately, 
however, none of these tricks is necessary here: indeed, for sufficiently large 
co (i.e., when go/d~ is small and the problem arises), as an immediate conse- 
quence of the decomposition (2.5), one gets 

go(V, co)= ~ AE v, co, (4.2) 
J = l  

(exactly, if the decomposition is exact), in principle for any N>~ 2. 
Practically, since we wanted to reproduce the whole curve representing 

AE as function of 0, and in particular to measure accurately gl, too, we 
used a relatively large N, ranging (typically) from 128 to 512. It turns out 
that (at least) three significant digits of go are perfectly stable in this range. 
But in fact, we observed that (for large enough co), even much lower values 
of N, for example, N = 4, give essentially identical results. By the way, this 
fact indirectly proves, far beyond the visual impression, that the shape of 
AE as function of 0 appearing in Fig. 2 really corresponds to the decom- 
position (2.5). In fact, occasionally we made a Fourier analysis of AE, and 
observed that the amplitude of the kth Fourier coefficient of AE decreases 
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very rapidly with k, namely as e Ikl~o). It could be seen that, for large co, 
this is enough to get good results for go with small N. 

A second, more relevant question concerns the accuracy of the algo- 
rithm used to integrate numerically the equations of motion, and in par- 
ticular to get, at the end of each collision, a reliable value of AE. The 
problem is quite delicate, because of the very high precision one needs for 
this quantity. We used a very elementary algorithm, sometimes called the 
"leap-frog algorithm" or "central differences method"; such an algorithm is 
adapted to differential equations of the second order of the form 2 = f ( z ) ,  
z e Nn, and is based on the easy relation 

z(t + e) = 2z(t - 5) - z(t)  + 82f(z(t) ) + (_~(84) (4.3) 

[in our case one has z = ( x , q ) ) ~ R  2, f = ( - m  I S V / O x , - I - t S V / ( ? ( p ) ] .  
The velocities do not appear explicitly in the algorithm; when needed, they 
are obtained by ~(t) = (1/2e)Ez(t + e) + z ( t -  5)] + (9(e2): thus, the error on 
the velocities is relatively big, but does not propagate. This algorithm can 
be written in the form of a symplectic map in ~2n: in fact, denoting 
z j=z( j e ) ,  w j = z j - z j  1 (and forgetting about the truncation error), one 
can give it the form of a symplectic mapping, namely 

Wj+I-~-Wj"~-ef(z j )  , Z j+I=Zj ' - [ -eWj+ 1 (4.4) 

This integration scheme is well known to work efficiently ('7) in connection 
with conservative systems; here, however, the precision one needs is so high 
that one should wonder whether the accuracy of the algorithm is, in 
principle, compatible with the results: in fact, elementary estimates would 
show that apparently, in order to keep the truncation error 8 within the 
limits of the required precision, one should take the time step e so small 
that there would be no hope to perform, in a reasonable computer time, 
the thousands of numerical integrations which are necessary to produce the 
above reported results. 

Practically, however, the situation is totally different. Indeed, we have 
the following facts: 

(i) The computed energy exchange AE, in particular the relevant 
quantities go, g,, turn out to be widely independent of the time 
step 5, as far as e is of order, say, 10 2(2g/co) or smaller. For 
example, at least three significant digits of go and d~ are stable 
if one changes e from 10 2(2~/co) to 10-4(2~/co). 

8 Concerning the roundoff errors, there are no serious difficulties: using quadruple precision, 
these errors are of order 10 .33 , so that (recalling that the integration time is short, and that 
there is no sensitive dependence on the initial conditions) one can confidently forget about 
them. 
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(ii) Still independently of e in the above range, the energy conserva- 
tion at the end of  each collision is incredibly good: the relative 
error 6 on the total energy is as small as 10 -3~ 

(iii) The energy conservation is, however, much worse, for many 
orders of  magnitude, and also depends on e, at the middle of 
collisions. Thus, there is some unexpected mechanism of com- 
pensation of errors to be understood. 

These facts can be understood theoretically, by means of classical perturba- 
tion theory, using in an essential way the symplectic character of the 
integration algorithm. We cannot give here a full discussion, which will 
be reported elsewhere, in a paper devoted to the symplectic integration 
schemes. Here we limit ourselves to a simple sketch of the essential idea, 
with the only aim to show that the above reported results are not (as we 
did believe for some time) manifestly absurd. To this purpose, let us discuss 
in detail only one problem, namely the "exaggeratedly good" energy 
conservation, and illustrate, in particular, the mechanism of the error 
compensation. 

As is well known, (18) a smooth symplectic map close to the identity, 
such as the above algorithm (4.4), can be interpolated formally by a 
convenient Hamiltonian flow; this means that there exists a convenient 
Hamiltonian H~ such that its time-e map coincides with the symplectic map 
(4.4), with an error decreasing faster than any power of e. Actually, within 
suitable assumptions, one can prove that the error decreases exponentially 
with e, say is of order e-1/ t  On the other hand, it is quite evident that H 
itself interpolates the map (4.4), with an error of order e2; as a conse- 
quence, one immediately gets H~=H+(9(e2). Moreover, it is quite clear 
that, if the interaction forces vanish, then H interpolates the map exactly; 
taking into account the form of the interaction potential, and recalling that 
r = x + a c o s  ~p ~-x, one then easily obtains the more precise "local" 
relation 

H~(px, P~o, x, (p) - H(px, p~, x, ~o) = O(g2e -(x/d)2) (4.5) 

Now, let {, = (px(t), p~,(t), x(t), ~o(t)) be a computed orbit; the error in the 
energy conservation at time t is, by definition, 6(I) = H(~,) - H({o). On the 
other hand, since H~ interpolates the map, one has H~({ , ) -H~({0)=  
(9(e- ~/~), and consequently 

6(t) = H({,) - H~({,) + H~(~o) - H({o) + (_0(e 1/~) 

= (9(e2e -(x(')m~2) + (9(e2e -w~ + (9(e 1/0 (4.6) 

where one also used x ( 0 ) =  do. For  generic t (in particular, at the middle 
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of a collision), one has x/d= (9(1), and consequently 5 = ( 9 ( g 2 ) .  Instead, at 
the end of the collision, when one has again x(t) = do, one obtains 

5 = (9(e2e w~ + (9(e -I/~) (4.7) 

Because of the exponentials, the rhs of this expression is easily made 
negligible, by taking e sufficiently small and do sufficiently large; as a matter 
of fact, s =  10-2(2n/o9) and do~d=6 or 8, depending on the number of 
digits one is working with, are sufficient. 
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F i g .  8. E r r o r  in the energy conservat ion  as funct ion of  time, f o r  E x = 1, m = t 0 ,  and two  
different t ime steps: ( a )  e = 1 0 - ~ ( 2 ~ / e ) ) ,  ( b )  e = 10-4(2~/e)). I n  both cases the error is, at the 
end, of  order 10 3o. 
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Figure 8 reports ~i as function of time for a collision process with Ex = 1, 
co = 10, and initial phase ~ = 0; the two curves refer to e = 10 3(2g/co) and 
z = 10-4(2re/co). Apart  from the scale, they look identical; in fact, they are 
exactly scaled of a factor 100, consistent with the above illustrated 
dependence of 6 on e (exactly means that, for example, the ratio of the 
heights of the largest peaks is found to be 100.00007). At the end of the 
collision one finds, in both cases, ~ -~ 10 -3~ 

5. C O N C L U S I O N S  A N D  O P E N  P R O B L E M S  

In this paper we studied numerically, on a very simple model, the rate 
of the energy exchanges between the translational and the rotational 
degrees of freedom of a molecule due to collisions with a wall. In full agree- 
ment with the Boltzmann-Jeans conjecture, the energy exchange AE is 
found to depend strongly, namely exponentially, on the angular velocity co. 
More precisely, according to (2.5), (2.6), we found two different exponen- 
tial laws for the average go of AE on the initial phase and for the fluctua- 
tion gl, with different coefficients To and ~1, namely % = 2 ~  1. 

Since, for large co, one has go ~ gl, it is quite important to distinguish 
between these quantities; in fact, as we have seen, the presence of two dif- 
ferent exponential laws for go and gl, and in particular the relation 
% = 2 ~ ,  play a rather delicate role in the approach to statistical equi- 
librium, giving rise to a phenomenon similar to intermittency. Such a dis- 
tinction between go and gl does not appear in the heuristic approach of 
refs. 2, 3, 8 and 9, where only the average go is considered, nor in the 
rigorous approach of classical perturbation theory, ('2-1s) where only the 
maximal value of IAEI, practically coinciding with g~, is taken into con- 
sideration. It is clear that, on both sides, one needs further investigation; 
our personal feeling is that a significant improvement could be achieved by 
combining in some way the two methods. 

The accuracy of our numerical computation is rather high; in fact, we 
could (easily) measure average energy exchanges of the order of one part  
over 1016 . This corresponds to very large equilibrium times, since, as we 
have seen, one then needs a number of collisions of order 1016 to get energy 
exchanges of order one, and consequently to possibly reach the statistical 
equilibrium. Our model is too poor  to allow any physical conclusion to be 
drawn; anyhow, let us recall that, for ordinary gases, 1016 collisions already 
represent a macroscopic time, namely a few hours, if one assumes, as is 
realistic, 1012 collisions per second. 9 

9The value go-~ 10-16 is taken from the last point of Fig. 3, and refers to ~=44 (in natural 
units). It is amusing to note that, according to the exponential law, by doubling co, one 
would get an average energy exchange per collision of order 10-32; the corresponding equi- 
librium time exceeds the lifetime of the universe. 
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Besides the very relevant limitation that the model is not realistic, 
there are other questions which make difficult a physical interpretation. 
First of all, in addition to the molecule-wall collisions, one should also 
consider the molecule-molecule collisions. A minimal familiarity with per- 
turbation theory is enough to say that the exponential laws are not going 
to disappear: however, the phenomenon is certainly more complicated, and 
in particular the coefficients 3o and z 1 could be significantly smaller; as a 
consequence, the contribution of these collisions could be, for high co and 
not too dilute gases, the dominant one. 

Another relevant question, perhaps the most crucial one, concerns the 
dependence of the coefficients Zo, rl  on v. In fact, we have here described 
the Boltzmann-Jeans conjecture as a phenomenon of freezing of the fast 
rotations; however, by analogy with quantum physics, one should expect 
that the freezing occurs at low temperatures, i.e., when co is small. The 
point is the following: according to (2.6), the basic quantities determining 
the rate of the energy exchanges are the products rico. Now, by lowering 
the temperature, v and co decrease in the same way, namely as the square 
root of the temperature; the behavior of r,co depends then crucially on the 
dependence of zi on v: if, as mentioned in Section 2, the dependence is more 
than linear in v -1, then for decreasing temperature the product rico 
increases, and the freezing phenomenon does take place. For this reason we 
say that, in connection with a realistic model, it is particularly important 
to investigate this question, both theoretically and numerically. 

In conclusion, we are aware that, for many different reasons, our 
results are still poor, and certainly not enough for a physical interpretation. 
Nevertheless, we think we have shown that, at least in principle, the 
Boltzmann-Jeans phenomenon exists, that it is worthwhile to further 
investigate it, and, moreover, that, although the Boltzmann-Jeans conjec- 
ture concerns the behavior of many-particle systems for macroscopic time 
scales, relatively simple numerical computation could give definite answers 
on it; this was indeed the main purpose of our work. 
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